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Figure 1. BITE enables 3D shape and pose estimation of dogs from a single input image. The model handles a wide range of shapes and
breeds, as well as challenging postures far from the available training poses, like sitting or lying on the ground.

Abstract

We address the problem of inferring the 3D shape and
pose of dogs from images. Given the lack of 3D train-
ing data, this problem is challenging, and the best meth-
ods lag behind those designed to estimate human shape and
pose. To make progress, we attack the problem from mul-
tiple sides at once. First, we need a good 3D shape prior,
like those available for humans. To that end, we learn a
dog-specific 3D parametric model, called D-SMAL. Second,
existing methods focus on dogs in standing poses because
when they sit or lie down, their legs are self occluded and
their bodies deform. Without access to a good pose prior
or 3D data, we need an alternative approach. To that end,
we exploit contact with the ground as a form of side infor-
mation. We consider an existing large dataset of dog images
and label any 3D contact of the dog with the ground. We ex-
ploit body-ground contact in estimating dog pose and find
that it significantly improves results. Third, we develop a
novel neural network architecture to infer and exploit this
contact information. Fourth, to make progress, we have to
be able to measure it. Current evaluation metrics are based
on 2D features like keypoints and silhouettes, which do not
directly correlate with 3D errors. To address this, we create
a synthetic dataset containing rendered images of scanned
3D dogs. With these advances, our method recovers sig-
nificantly better dog shape and pose than the state of the

art, and we evaluate this improvement in 3D. Our code,
model and test dataset are publicly available for research
purposes at https://bite.is.tue.mpg.de/.

1. Introduction
Capturing and modeling 3D animal shape and pose has

many applications, ranging from biology and conservation
to entertainment and virtual content creation. Cameras are
a natural sensor to observe animals because they do not re-
quire the animal to stand still, hold specific postures, be in
physical contact, or otherwise cooperate. The study of an-
imals using images has a long tradition, e.g. Muybridge’s
famous “Horse in Motion” chronophotographs [30]. Still,
expressive 3D models that can adapt to the individual
shape and pose of an animal have only recently been cre-
ated [44], following earlier work on 3D human shape and
pose [1, 23, 38]. Here, we address the task of reconstruct-
ing dogs in 3D from a single image. We focus on dogs as a
representative animal species that features both large shape
variability across different breeds and strong articulated de-
formations typical of quadrupeds. Dogs are frequently pho-
tographed, so images showing a wide range of poses, shapes
and environments are readily available.

While, at first glance, modeling humans and modeling
dogs may seem like similar problems, they present very dif-
ferent technical challenges. For humans there is an enor-



mous amount of existing 3D scan and motion capture data.
This data covers relevant pose and shape variations, which
has made it possible to learn powerful, articulated models
like SMPL [23] or GHUM [38].1 In contrast, 3D observa-
tions of animals are difficult to acquire, and at present too
scarce to train 3D statistical models that are equally expres-
sive and cover all possible shapes and poses. The introduc-
tion of SMAL [44], a parametric quadruped model learned
from toy figurines, has enabled significant progress and has
made it possible to reconstruct animals in 3D from images,
including dogs [5, 21, 26]. However, SMAL is a generic
model for multiple species from cats to hippos. While it
can represent the varied body shapes of different animals, it
cannot represent the distinctive and fine-grained character-
istics of different dog breeds (e.g., the wide variety of ears).
To address this issue, we introduce the first dog-specific
parametric model, termed D-SMAL, to accurately represent
dogs.

An additional issue is that there is very little motion cap-
ture data of dogs (unlike humans) and the data that does
exist rarely captures sitting and lying poses. This makes it
difficult for existing methods to infer dogs in such poses.
For example, if one learns a prior over 3D poses from ex-
isting data, it will be biased to standing/walking poses. One
could weaken this prior, using generic constraints, but then
the estimation of pose is highly under-constrained. To ad-
dress this problem, we exploit information about physical
contact that has been neglected when modeling (land) an-
imals: they are subject to gravity and therefore stand, sit
or lie on the ground. We introduce ground contact infor-
mation and show that we can exploit this to estimate com-
plex dog poses, even in challenging cases with significant
self-occlusion. While ground plane constraints have been
exploited in human pose estimation, their potential bene-
fit is larger for quadrupeds, simply because four legs mean
more ground contact points, as well as more occluded body
parts and larger non-rigid deformations when sitting or ly-
ing down.

Another limitation of previous work is that the recon-
struction pipelines are usually trained on 2D images, due to
the difficulty of collecting 3D data (with paired 2D images).
As a result, they tend to predict shapes and poses that accu-
rately match the image evidence when re-projected, but are
distorted along the viewing direction. Viewed from a differ-
ent angle, the 3D reconstruction may be inaccurate because,
in the absence of paired data, there is not enough evidence
to learn where to place more distant or even occluded body
parts along the depth direction. Again, we find that mod-
elling ground contact helps: to circumvent the manual re-
construction (or synthesis) necessary to obtain paired 2D
and 3D data, we revert to a weaker form of 3D supervision

1In fact, recent work on 3D humans deals with advanced aspects like
clothing [36, 37] or multi-person scenarios [10].

and obtain ground contact labels. Specifically, we present
real images to annotators and ask them to label whether the
ground surface under the dog is flat and, if so, to also an-
notate the ground contact points on the 3D animal. These
labels are exploited not only for training: we found that the
network can be trained to classify the surface and detect the
contact points fairly reliably from a single image, such that
they can also be used at test time.

We call our reconstruction system BITE, which we base
on the current state-of-the-art model, BARC [26]. As an
initial, coarse fitting stage we re-train BARC with our new
D-SMAL dog model. We then pass the resulting predictions
to our newly developed refinement network, which we train
with ground contact losses to refine the dog’s pose (as well
as the camera parameters). Optionally, at test time, we can
further exploit the ground contact loss to optimize the fit to
the test image, fully automatically. This significantly im-
proves reconstruction quality. With BITE, we obtain dogs
that correctly stand on the (locally planar) ground, or are re-
constructed realistically in sitting and lying postures, even
though the training set for the BARC pose prior does not
contain such poses (see Fig. 1).

Previous work on 3D dog reconstruction is evaluated by
back-projecting to the image and measuring 2D residuals,
thus projecting away errors in depth [5], or via subjective
visual ratings [26]. To address the lack of objective 3D
evaluations, we have created a novel, semi-synthetic dataset
with 3D ground truth, by rendering 3D scans of real dogs
from different viewing angles. We evaluate BITE as well
as its main competitors on this new dataset, and show that
BITE indeed sets a new state of the art.

In summary, our contributions are:

1. We introduce D-SMAL, a novel, dog-specific 3D pose
and shape model derived from SMAL.

2. We develop BITE, a neural model to refine 3D dog
poses by encouraging plausible ground contact, while
at the same time estimating the local ground plane.

3. We show that with that model it becomes possible to
reconstruct dog poses far from those encoded in a (nec-
essarily limited) prior.

4. We advance the state of the art for monocular 3D pose
estimation on the challenging StanfordExtra dataset.

5. We put forward a new, semi-synthetic 3D test dataset
based on scans of real dogs, with which we hope to
encourage a move to true 3D evaluation.

2. Related Work

There is a vast literature on 3D reconstruction of humans,
while little work exists on animals. We review here model-
based methods that estimate 3D animal shape and pose,



model-free methods that recover 3D shape, and relevant lit-
erature on the use of contact information, so far exploited
only for humans.

2.1. Model-based 3D animal reconstruction

The majority of the methods for animal 3D pose and
shape estimation, or 3D reconstruction, are based on the
SMAL model, which is so far the only 3D parametric articu-
lated shape model for generic quadrupeds. SMAL has been
used to estimate 3D shape and pose of zebras [43] and dogs
from monocular images [5, 21, 26] and RGBD data [19],
while Biggs et al. apply SMAL to video of animals of dif-
ferent species [6]. Another articulated 3D shape model has
been defined for birds [34]. The advantage of using articu-
lated shape models is that 3D shape and pose priors can be
defined for the species of interest, supporting reconstruction
in ambiguous cases. Additionally, the recovered parametric
shape and poses can be used for further analyses of body
size, posture, motion and behavior.

2.2. Model-free methods for animals

Recently, due to the progress in model-free implicit and
neural representations, several methods have been proposed
to reconstruct 3D animals, mostly from video. The qual-
ity of the reconstruction, in terms of 3D shape and ar-
ticulated motion, is still far from model-based methods.
With CMR, Kanazawa et al. [18] learn to reconstruct 3D
birds in a mesh-based representation, without assuming an
existing bird template. LASR [39] reconstructs arbitrary
3D articulated deformable objects from video, exploiting
analysis-by-synthesis. The method is highly flexible, but
results are not always of good quality. BANMo [40] recon-
structs animated 3D shapes from video while also learning
the skeleton structure. These skeletons vary between an-
imals, making it hard to compare motions of different in-
dividuals. TAVA [22] learns a 3D articulated model from
multiple videos and a skeleton of an animal; it also learns
skinning weights. Results are reported only on noise-free
synthetic images, with clean backgrounds, obtained from
rigged graphics models. LASSIE [41] is an optimization
method that reconstructs 3D articulated animals given a set
of images and a skeleton. It can be applied to generic ani-
mals, but cannot deal with occlusions and complex poses.

2.3. Contact-based methods for humans

Several recent methods use contact between a subject
and the scene to improve 3D human pose estimation [15,25,
28, 31, 35, 42] and 3D hand pose estimation [7, 11, 14, 16].
Often, methods only consider the feet [25, 42], frequently
using mocap data to estimate foot contact on the ground.
PROX [15] exploits contact with objects, but assumes the
3D scene is known. BEHAVE [4] uses RGB-D camera to
capture humans interacting with objects and scenes.

Figure 2. D-SMAL shape space. Shown are the mean shape and
the 7 principal modes of deformation.

Very few methods use image evidence to predict con-
tact points. HOT [8] regresses 2D contact heatmaps and
body-part labels from RGB images. IPMAN [31] exploits
interpenetration of the body-mesh with the ground-plane
to estimate body-ground pressure from images. Fieraru et
al. [12] and TUCH [24] learn to predict human self contact.
RICH [17] is a dataset with contact points defined on a 3D
human body. This annotation is obtained with an expensive
and complex capture, requiring multi-view video and 3D
scanning of subjects and the scene. As a result, the dataset
has limited variability. It is used to train BSTRO, which es-
timates 3D contacts on a human body from a single image.
In contrast, we also define contact labels on the 3D body
but through an annotation procedure applied on arbitrary in-
the-wild images, providing a richer dataset. We only exploit
contact between the subject and a flat ground plane. Unlike
humans, dogs do not have hands to manipulate objects, so
most of their body-scene contact is with the ground.

3. Approach
3.1. D-SMAL model

Our model-based monocular reconstruction method
is based on a novel, dedicated dog-only version of
SMAL [44]. The dominant 3D parametric shape model for
quadrupeds, SMAL, covers inter- and intra-species varia-
tions across a number of mammal species. It was learned
from a set of toy figurines and unifies all training species
(ranging from domestic cats to hippos) in a linear single
shape space. When modeling on a particular species, the
generic representation has undesirable properties: on the
one hand the shape space is not constrained enough to pre-
vent undesired, unrealistic shapes (e.g., a dog should not
ever have the proportions of a hippo or a horse), on the
other hand the shape space is too limited and not expressive
enough to represent subtle, but important species-specific
variations (e.g., the shapes and articulations of different
dog’s ears).

To train D-SMAL we employ scans of 39 toy figurines of
animals in the canine family (5 used in the original SMAL
model and 34 new ones). We follow the GLoSS registration
procedure [44] to register a template mesh to all scans. For
dog breeds with floppy ears, we set the 3D rotation of the



ears in the GLoSS template accordingly. Moreover, we also
indicate whether the dog’s mouth is closed (in which case
we disregard mesh-to-scan distances inside the mouth when
computing the loss), and define an additional lip-matching
loss. Once the scans have been registered, we follow [44]
to learn the shape space of D-SMAL, which we then scale
to unit size and augment with variable limb lengths to in-
crease expressiveness, as previously done when modeling
dogs [5, 26]. Additionally, given that we found a few toy
figurines with back and front legs of different length, we
rescale the limbs such that they are more naturally propor-
tioned. Figure 2 displays the first 7 components of our
model’s shape space.

3.2. BITE Network

Our network extends BARC; i.e., it takes the pose esti-
mate from BARC, as well as the associated 2D predictions
of keypoint locations and the silhouette, as intermediate re-
sults that are refined by BITE’s refinement stage. The entire
mapping from a raw input image to the refined 3D pose es-
timate forms an integrated neural pipeline.

Architecture: Figure 3 depicts the complete BITE ar-
chitecture. In the first step, an input image is fed to a net-
work derived from BARC [26]. BARC+ extends BARC by
using D-SMAL and the network consists of a stacked hour-
glass that predicts 2D keypoints and a segmentation mask,
followed by shape and pose prediction branches, where the
former predicts 3D shape parameters and the camera view-
point (translation and focal length) and the latter predicts
pose parameters. BITE adds a refinement stage to increase
the accuracy of the BARC+ predictions. To that end, the
predicted 3D mesh is projected to the image, giving rise to
2D keypoints and a silhouette. These are combined with
the intermediate keypoint and silhouette predictions from
BARC+ and with the image itself, thus implicitly specify-
ing the residual error of those intermediate predictions. All
these intermediate results are fed into a 2D encoder, fol-
lowed by fully connected heads that output refined 3D pose
and camera parameters. We have also tried to refine the
shape parameters, but empirically that proved to be neither
necessary nor beneficial. For images in which the dog is on
flat ground, refinement is supervised with a loss that encour-
ages an anatomically and physically consistent placement
of the 3D model on a local ground plane. In addition, fur-
ther heads of the refinement stage predict per-vertex ground
contact labels and a binary label that indicates whether the
ground is flat. This information is collected to drive BITE’s
optional test time optimization (see below).

Predicting novel poses far from the prior: A sub-
tle, but practically important bottleneck when modelling
3D animals is the limited expressiveness of the pose prior.
Since the training data is insufficient to fully characterize
the space of allowable poses, it is common practice to en-

courage predictions that are close to a small set of training
poses – in the case of BARC this is through a normalizing
flow prior that is trained on a set of simple poses (stand-
ing, walking) from the RGB-D dataset [19]. The prior en-
sures that the predictions are in a plausible region of the
pose space, but at the same time rules out many realistic
poses that are not represented adequately by the training
data. For dogs, this concerns, in particular, sitting and ly-
ing postures, since there is, to our knowledge, no training
database that adequately covers them. BITE can be under-
stood as a means to expand the space of allowable poses,
by injecting another type of evidence, namely the physical
contact with the ground. In this view, our network makes
the most out of BARC’s restrictive pose prior, but then goes
beyond it: first, it produces an imperfect, but viable estimate
within the scope of the pose prior. Then, it upgrades that ini-
tial estimate to a complex pose outside the prior’s domain,
guided by the ground contact information (in conjunction
with local joint angle constraints).

Ground contact: The refinement network predicts not
only refined pose parameters, but also has an auxiliary head
to estimate ground contact labels on a per-vertex basis. This
head, based on a variant of the GraphCMR network with an
encoder-decoder structure with skip connections [9,20,21],
provides the detailed contact information needed for BITE’s
test-time optimization; see Section 3.4. Even though the as-
sumption of locally flat ground is valid for most images,
there can be exceptions. These are handled by another head
of the refinement network that predicts a binary classifica-
tion label for the flatness of the surface under the dog.

3.3. BITE Network Losses

BARC+ Losses: For the initial fitting stage we use the
original losses proposed for BARC: reprojection losses on
keypoints and the silhouette, priors for pose, camera focal
length and translation, and breed losses (with the 3D breed
loss adjusted to the new D-SMAL model).

Ground Contact Loss: As we do not know the location
of the ground plane in the camera coordinate system, we
learn to find it jointly with the dog’s ground contact, or more
precisely: we infer it from the dog’s pose and contact points.

The topology of our dog model (which it inherits from
SMAL) is such that vertices are denser on the paws and
the face than on other body parts. Thus, we apply the
ground contact loss to a uniformly meshed surface, ob-
tained by Voronoi clustering [3, 32, 33] on the mesh with
the mean shape in the canonical “T” pose. We map the
vertex-wise ground contact labels from the D-SMAL model
to the new surface and aim to find a plane that minimizes
the squared sum of distances between the set of m con-
tact points (p1, . . . , pm) and the plane. Given a point c be-
longing to the plane and a unit normal vector n, which de-
termines the plane orientation, the orthogonal distance be-



Figure 3. BITE network. Our network exploits ground contact constraints and refines BARC+ predictions. The brown stars denote that
additional information is fed to the respective head. BARC+ refers to the network of [26] with the new D-SMAL model.

tween a point pi and the plane is (pi − c)⊤n. The plane
itself can be found by minimizing:

min
c,∥n∥=1

∑n

i=1

(
(pi − c)⊤n

)2
. (1)

Solving this equation for c gives c = 1
m

∑m
i=1 pi, which

corresponds to the center of the contact points. Introducing
the 3 × m matrix A = [p1 − c, ..., pm − c], Eq. 1 can be
rewritten as min∥n∥=1

∥∥A⊤n
∥∥2
2

and solved by a singular
value decomposition of A = USV ⊤:

∥A⊤n∥22 =∥S⊤U⊤n∥22 =(σ1y1)
2+(σ2y2)

2+(σ3y3)
2, (2)

where σ1, σ2, σ3 are the singular values, listed in decreasing
order, and y is the unit vector y = U⊤n. Eq. 2 achieves its
minimum for y = (0, 0, 1)⊤ and equivalently n = U(:, 3).
Plugging this into Eq. 1 leads to a minimum value of σ2

3 ,
which is thus equivalent to the sum of squared of distances
between the contact points and the best fitting plane [2, 13,
29]. We define our ground plane loss as:

Lgc,plane = σ2
3 . (3)

Ground Penetration Loss: To strengthen the ground
contact loss, we complement it with a ground penetration
loss that penalizes all non-contact vertices located below the
ground plane. To that aim, we first evaluate if the plane nor-
mal calculated in the last step points up or down, and define
a ground penetration loss for the set of points (p̂1, . . . , p̂m̂)
below the plane as:

Lgc,pen =
∑n

i=1
(p̂i − c)⊤n. (4)

Pose Regularizers for the Refinement Network: To
serve its purpose, the refinement network must be able to
predict poses that considerably differ from those preferred
by the pre-trained pose prior. Still, it must respect anatom-
ical limits and should only deviate from the initial, tightly

constrained fit as far as necessary. We penalize sideways
movements of the legs as well as their torsion. The struc-
ture of the refinement network, which predicts differential
updates to the pose, makes it possible to explicitly regular-
ize the deviations, by multiplying them by a constant fac-
tor, that we set at 0.1. There are thus no hard constraints
on how far the refinement can deviate from the initial esti-
mate, but training starts with small changes, and converges
as desired. Predicting an additive correction and scaling it
down is an important engineering detail, which helps the
network to benefit from the overly tight pose prior without
being bound by it.

Reprojection Losses: We exploit the same reprojection
losses as [26], namely a reprojection loss for the keypoints
and one for the silhouette.

Vertex-Wise Ground Contact: We treat the ground
contact prediction as a binary classification and apply a per-
vertex cross-entropy loss.

Ground Flatness: We also apply a cross-entropy loss
on the label for flatness of the ground.

3.4. BITE Optimization

While a single run of BITE’s refinement stage already
gives very accurate predictions (see experiments), they can
be improved even further with an iterative optimization
loop. This is a test-time procedure driven by the individual
test image, but thanks to our novel ground contact losses,
we are now able to refine results based on additional image
evidence without over-fitting to the image. Naturally, this
optional extension comes at the cost of increased runtime.

Optimization is performed over translation, camera focal
length, dog pose and dog shape. While the BITE network
optimizes shape in terms of shape parameters β (consisting
of PCA coefficients βpca and limb length parameters κ), we
do the same for the first half of the iteration steps within the
test time optimization but, in the second half, allow addi-
tional symmetric vertex shifts.



Similar to the dog model in [5, 26], D-SMAL is a func-
tion M(βpca, κ, θ) of PCA shape coefficients βpca, limb
length coefficients κ and pose θ. The steps from model
parameters to the final posed mesh can be summarized as
adding shape blend shapes through a linear blend shape
function BS(βpca) to a template mesh T , resulting in TS =
T + BS(βpca) and in a second step deforming the mesh
further by posing the model according to pose parame-
ters. Limb length changes and translation are also applied
within this second step and we describe this second step
as a function F (TS , κ, θ). To go beyond the shape space
of the current model, we introduce a set of vertex shifts υ
that are added to TS . We end up with M(βpca, κ, θ) =
F (TS + υ, κ, θ) = F (T +BS(βpca) + υ, κ, θ).

Dog shape estimation from an image is a highly under-
constrained problem; e.g. at least half the dog is always oc-
cluded. We compensate for that weak visual cues by as-
suming symmetric dog shape. The vertex shifts υ are im-
plemented as a function of a vector with three entries for
each left vertex and two entries for each center line vertex.
Shifts for right vertices follow directly from the shifts for
the left side. Note that symmetric vertex shifts help limit
over-fitting to 2D evidence but cannot model asymmetric
shape details and pose dependent deformations. But such
deviations from the D-SMAL model are small relative to
the limited expressiveness of the shape space in modeling
widely varied dog shapes from images.

Losses: The optimization loop minimizes the same re-
projection losses used during network training. Since there
are no silhouette and keypoint annotations available for test
images, we exploit the predictions of the BARC+ stacked
hourglass. The ground contact and ground penetration
losses are also similar to the losses applied within the net-
work, supervised by the predicted vertex-wise contact la-
bels and only active if the ground plane is predicted to
be flat. Furthermore, we penalize torsion as well as side-
ways movements of legs and tail. Those losses are aug-
mented with three 3D regularization terms: (1) A normal
consistency loss L3D, norm that is computed as the consis-
tency of the normals n1, n2 for each pair of neighboring
faces: L3D, norm(n1, n2) =

∑
1− cos(n0, n1), (2) An edge

loss L3D, edge that encourages a mesh with uniform edge
lengths, and (3) a loss that encourages the Laplacian of the
deformed mesh to be similar to the Laplacian of the mesh
before vertex-shifts were allowed, see [21].

4. Experiments

4.1. Training Data

We train our network on the StanfordExtra image dataset
[5]. This dataset is annotated with 2D keypoints, silhou-
ettes and breed labels. Similarly to [26], we use the training
set extended with pseudo-ground truth withers, throat and

eyes keypoints. We furthermore collect vertex-wise ground
contact labels by first grouping the images based on poses,
visibility, and ground flatness. We then label a selection of
the StanfordExtra training images with contacts either on a
per-paw or per-vertex level, depending on the type of pose.
The final training set has contact labels for 2554 images of
standing or walking dogs, 795 lying dogs, 867 sitting dogs
and 89 dogs in other poses. Those groups based on pose
are re-used within our data sampler in order to have more
balanced batches. By default, we train versions of our net-
work that include ground contact and ground penetration
losses with a data sampler that, for each batch, randomly
selects 2 images with non-flat ground, and 12 images with
flat ground. Out of those 12 images, 2 show sitting poses,
2 lying poses, 2 poses of dogs moving or standing with less
than 4 paws on the ground, 4 images of dogs standing on all
paws and 2 images that belong into neither of those groups.
Within an ablation study, we show that this data sampling
strategy helps, but it is not crucial and can be avoided in
case labels of this kind are not available.

4.2. Evaluation Protocols

Due to the lack of ground truth 3D data, previous work
has typically relied on 2D reprojection errors. For such an
evaluation, the predicted 3D model is projected into the im-
age and an intersection over union (IoU) score for the sil-
houette as well as a score measuring the percentage of cor-
rect keypoints (PCK) are reported. For good predictions,
those scores should to be high, but high reprojection scores
do not guarantee an accurate 3D estimate due to ambiguities
in depth. Current methods may be overfit to these metrics.
Still, for completeness, we report IOU and PCK scores in
the supplementary material.

To enable quantitative evaluation of 3D shape, we con-
tribute a new test dataset with 3D ground truth shapes. We
purchase 26 textured scans of six dogs: a Labrador, a Bull-
dog, a Husky, an Akita, a Malinois and a Dalmatian. We
scale the dog scans such that they have realistic relative
size, place each of them on a virtual lawn to model basic
occlusions that often happen around the paws, and render
7 images per dog from different viewpoints. The rendered
images have size of 1080×1080 pixels, but we use ground
truth bounding boxes to prepare the input for all networks
to test. Examples of the rendered images can be found in
Fig. 7.

We manually label a small set of easy-to-locate key-
points on the scans and on the D-SMAL model and use
those to initialize a rigid alignment (rotation, translation,
and scaling) between prediction and ground truth scan. The
rigid alignment is refined based on the absolute distance be-
tween each scan vertex and the closest point on the surface
of the predicted mesh (scan-to-mesh distance). This evalu-
ation follows the evaluation scheme proposed as part of the



NoW benchmark for faces [27].
In contrast to faces, animal bodies show complex defor-

mations and only measuring the distances in one direction,
namely from scan to the predicted mesh, can understate er-
rors, as the scan only represents the outer surface of the
dog; occluded surfaces are not represented. Therefore, we
complement the evaluation with mesh-to-scan distance. To
calculate this, we apply the same uniformly re-meshed D-
SMAL surface used to calculate the ground contact loss.

4.3. Comparison to Related Work

We compare BITE and BITE-ttopt (i.e., including test
time optimization) to WLDO [5], coarse-to-fine animal
pose and shape estimation (CTF) [21], and BARC [26]. Er-
rors are reported in Table 1. The evaluation shows that we
outperform all previous methods. We show qualitative ex-
amples in Fig. 4 and Fig. 5; further illustrations are in the
supplementary material.

4.4. Ablation Study

First, we train the BARC network, with the new D-
SMAL model. We call this network BARC+. We do not
change the network or the losses, but only adjust the breed
losses to the new model and make a few minor changes,
such as re-adjusting the dog’s toe keypoint. This experiment
is called BARC+ w/o gc, where ”gc” stands for ground con-
tact. We show that the new dog model leads to a small im-
provement over BARC in terms of scan-to-mesh and mesh-
to-scan errors, see Tab. 2 BARC+ w/o gc compared with
BARC in Tab. 1, but also to a visible improvement in terms
of perceptual results, see supplementary material.

Next, we examine the full network training. Table 2
shows results for our method excluding test time optimiza-
tion (BITE) and including test time optimization (BITE-
ttopt). If we forgo the data sampling procedure described
in Sec. 4.1, we obtain slightly worse results. When not
exploiting our novel ground contact losses (BITE w/o gc)
within the refinement network, the results are significantly
worse. The refinement network in that case overfits to the
image evidence, and even though IOU and PCK scores on
the StanfordExtra test set are good, our 3D evaluation re-
veals significant deviations from the true pose and shape.
The same holds when looking at the BARC+ part of the
network and comparing the experiment with ground con-
tact losses (BARC+ with gc) to the one without (BARC+
w/o gc).

Another important observation is that, if we use ground
contact losses, the refinement network leads to a significant
boost in performance (BITE vs. BARC+ with gc). The chal-
lenge is to exploit an existing pose prior (in our case based
on Normalizing Flows), but still be able to significantly de-
viate from what it has seen at training time. Some poses,
like standing and symmetric sitting poses, such as the left-

error [cm]
scan→mesh mesh→scan

WLDO [5] 2.65 7.55
CTF [21] 2.59 6.17
BARC [26] 2.40 3.93
BITE (ours) 2.07 3.15
BITE-ttopt (ours) 2.03 2.84

Table 1. Comparison to SOTA.

error [cm]
scan→mesh mesh→scan

BARC+ w/o gc 2.32 3.92
BARC+ with gc 2.13 3.48
BITE w/o gc 2.30 4.16
BITE w/o sampler 2.09 3.31
BITE with shape in BARC+ 2.12 3.17
BITE with shape in ref 2.29 4.24
BITE (ours) 2.07 3.15
BITE-ttopt (ours) 2.03 2.84

Table 2. Ablation study.

most example in Figure 6, are close enough to the prior’s
expectation to be reconstructed with the BARC+ network
augmented with ground contact losses. But totally unseen
poses, like the right two images in Figure 6, require a net-
work with more flexibility.

We also conduct experiments where we optimize the
shape during the refinement step as well. We have tested
two settings, either adding a head for shape estimation to the
refinement branch or allowing gradients to back-propagate
to the shape branch of the BARC+ part. Both variants
degrade 3D performance, due to undesired shape changes
when trying to fulfil the ground contact constraints. To see
this, think how shrinking the legs instead of lying down can
bring the torso to the ground. Outsourcing shape prediction
to the training of the BARC+ part stabilises the shape pre-
dictions, since the breed losses help to prevent bad shape
predictions even when faced with inaccurate poses. We do,
however, allow shape changes during test time optimization
to obtain the best result.

5. Conclusion

We present a method for 3D dog reconstruction from
monocular images. The 3D pose and shape estimation of
articulated bodies from single images is a challenging prob-
lem that, for dogs, has been so far poorly addressed, due
to issues like self-occlusion, no notion of depth, restric-
tive pose priors and insufficiently expressive shape spaces.
Even though attempts have been made to go beyond the
shape spaces of available dog models by predicting vertex
shifts, those methods are not yet capable of predicting real-
istic 3D dog meshes. We move forward by providing a new



WLDO

CTF

BARC

BITE (ours)

BITE ttopt (ours)

Figure 4. Comparison with SOTA methods. This figure shows WLDO [5], CTF [21], BARC [26] and our results.

Figure 5. BITE results. Visualization in 3D illustrates the ground
contact.

Figure 6. Benefit of the refinement network. Top row: input image,
Middle: BARC+ with gc, bottom row: BITE. The figure illustrates
the importance of the refinement stage: the pose prior is limited in
its ability to predict poses outside the training distribution.

dog model called D-SMAL, with an extended shape space.
Then, we tackle pose estimation. In contrast to humans,
pose priors for animals are very limited. Instead of captur-
ing 3D poses of dogs, which is hard, we take an alternative
approach, and attempt to learn to generate complex, self-
occluded 3D poses by enriching our knowledge about the
3D image content. Specifically, we introduce ground con-
tact constraints and design a network such that we can still

Figure 7. Renderings of scanned dogs serve as test images.

exploit old pose priors to initialize the predictions, but af-
terwards deviate from those values and, if necessary, go far
beyond the original prior’s target region. To the best of our
knowledge, we, for the first time, predict realistic complex
poses such as sitting and lying postures for dogs. After es-
timating reasonable shape and pose parameters, we are able
to go beyond the D-SMAL shape space by allowing free
vertex shifts. Previous work on 3D dog pose has been eval-
uated in 2D, but IOU and PCK scores are not good indica-
tors of 3D quality. We contribute with a novel dataset with
3D ground-truth, obtained by rendering real dogs captured
in 3D. Our BITE method outperforms all previous work on
this dataset. Future work should consider self-intersections,
use inferred shapes to expand the D-SMAL shape space,
and learn more complex pose-dependent deformations.

Acknowledgments. This research was supported by the
Max Planck ETH Center for Learning Systems. A conflict
of interest disclosure for Michael J. Black can be found here
https://files.is.tue.mpg.de/black/CoI CVPR 2023.txt



References
[1] Dragomir Anguelov, Praveen Srinivasan, Daphne Koller, Se-

bastian Thrun, Jim Rodgers, and James Davis. Scape: shape
completion and animation of people. In SIGGRAPH. 2005.
1

[2] K Somani Arun, Thomas S Huang, and Steven D Blostein.
Least-squares fitting of two 3-D point sets. Transactions on
Pattern Analysis and Machine Intelligence (TPAMI), 1987. 5

[3] M Audette, D Rivière, M Ewend, A Enquobahrie, and S
Valette. Approach-guided controlled resolution brain mesh-
ing for fe-based interactive neurosurgery simulation. In Con-
ference on Medical Image Computing and Computer As-
sisted Intervention (MICCAI) Workshops, 2011. 4

[4] Bharat Lal Bhatnagar, Xianghui Xie, Ilya A Petrov, Cristian
Sminchisescu, Christian Theobalt, and Gerard Pons-Moll.
Behave: Dataset and method for tracking human object inter-
actions. In Computer Vision and Pattern Recognition Con-
ference (CVPR), 2022. 3

[5] Benjamin Biggs, Ollie Boyne, James Charles, Andrew
Fitzgibbon, and Roberto Cipolla. Who left the dogs out: 3D
animal reconstruction with expectation maximization in the
loop. In European Conference on Computer Vision (ECCV),
2020. 2, 3, 4, 6, 7, 8

[6] Benjamin Biggs, Thomas Roddick, Andrew Fitzgibbon, and
Roberto Cipolla. Creatures great and SMAL: Recovering the
shape and motion of animals from video. In Asian Confer-
ence on Computer Vision (ACCV), 2018. 3

[7] Zhe Cao, Ilija Radosavovic, Angjoo Kanazawa, and Jitendra
Malik. Reconstructing hand-object interactions in the wild.
In International Conference on Computer Vision (ICCV),
2021. 3

[8] Yixin Chen, Sai Kumar Dwivedi, Michael J. Black, and Dim-
itrios Tzionas. Detecting human-object contact in images.
June 2023. 3

[9] Hongsuk Choi, Gyeongsik Moon, and Kyoung Mu Lee.
Pose2mesh: Graph convolutional network for 3D human
pose and mesh recovery from a 2D human pose. In Euro-
pean Conference on Computer Vision (ECCV), 2020. 4

[10] Zijian Dong, Jie Song, Xu Chen, Chen Guo, and Otmar
Hilliges. Shape-aware multi-person pose estimation from
multi-view images. In International Conference on Com-
puter Vision (ICCV), 2021. 2

[11] Zicong Fan, Omid Taheri, Dimitrios Tzionas, Muhammed
Kocabas, Manuel Kaufmann, Michael J. Black, and Otmar
Hilliges. ARCTIC: A dataset for dexterous bimanual hand-
object manipulation. June 2023. 3

[12] Mihai Fieraru, Mihai Zanfir, Elisabeta Oneata, Alin-Ionut
Popa, Vlad Olaru, and Cristian Sminchisescu. Learning
complex 3D human self-contact. In Conference on Artificial
Intelligence (AAAI), 2021. 3

[13] Walter Gander and Jiri Hrebicek. Solving problems in scien-
tific computing using Maple and Matlab®. Springer Science
& Business Media, 2004. 5

[14] Patrick Grady, Chengcheng Tang, Christopher D. Twigg,
Minh Vo, Samarth Brahmbhatt, and Charles C. Kemp. Con-
tactOpt: Optimizing contact to improve grasps. In Computer
Vision and Pattern Recognition Conference (CVPR), 2021. 3

[15] Mohamed Hassan, Vasileios Choutas, Dimitrios Tzionas,
and Michael J. Black. Resolving 3D human pose ambigu-
ities with 3D scene constraints. In International Conference
on Computer Vision (ICCV), 2019. 3

[16] Yana Hasson, Gül Varol, Dimitrios Tzionas, Igor Kale-
vatykh, Michael J. Black, Ivan Laptev, and Cordelia Schmid.
Learning joint reconstruction of hands and manipulated ob-
jects. In Computer Vision and Pattern Recognition Confer-
ence (CVPR), 2019. 3

[17] Chun-Hao P. Huang, Hongwei Yi, Markus Höschle, Matvey
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