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1. 2D Reprojection Errors

For lack of a 3D test set, previous work on 3D dog shape

and pose estimation has most commonly been evaluated in

terms of 2D reprojection scores, namely intersection over

union (IOU) and percentage of correct keypoints (PCK).

While we maintain that those metrics are unable to capture

the 3D quality of a predicted shape (see discussion in the

main paper), we report them for the sake of completeness.

Table S.1 shows a comparison between our method and re-

lated work, and Tab. S.2 reports scores for all ablated ver-

sions of our BITE. We outperform previous state-of-the-art

methods by a considerable margin: our full method reaches

an IOU of 85.5 and a PCK of 86.3, compared to 81.6 IOU

and 83.4 PCK for the closest competitor (CTF). The thresh-

old for a correct keypoint in PCK was set to 0.15, as in [3].

3D errors [cm] rep. scores

s→m m→s IOU PCK

WLDO [1] 2.65 7.55 74.2 78.8

CTF [2] 2.59 6.17 81.6 83.4

BARC [3] 2.40 3.93 75.1 82.8

BITE (ours) 2.07 3.15 79.4 84.8

BITE ttopt (ours) 2.03 2.84 85.5 86.3

Table S.1. Comparison to SOTA. Scan-to-mesh and mesh-to-

scan distances on our novel 3D test set, and IOU as well as PCK

scores on the Stanford Extra test set.

2. 3D Evaluation

This section shows visual examples of input images from

our test set and elaborates on the calculation of scan-to-

mesh and mesh-to-scan distances.

3D errors [cm] rep. scores

s→m m→s IOU PCK

BARC+ w/o gc 2.32 3.92 76.1 82.6

BARC+ with gc 2.13 3.48 75.3 80.7

BITE w/o gc 2.30 4.16 80.5 85.6

BITE w/o sampler 2.09 3.31 78.4 83.6

BITE with shape in BARC+ 2.12 3.17 79.6 85.2

BITE with shape in ref 2.29 4.24 79.8 85.7

BITE (ours) 2.07 3.15 79.4 84.8

BITE ttopt (ours) 2.03 2.84 85.5 86.3

Table S.2. Ablation study. Scan-to-mesh and mesh-to-scan dis-

tances on our novel 3D test set, and IOU as well as PCK scores on

the Stanford Extra test set.

2.1. Input Images

In Figure S.1 we provide an overview of the textured 3D

scans of real dogs that make up our 3D test dataset. For

each scan, the figure displays a randomly selected rendering

among the 7 available frontal viewpoints, cropped accord-

ing to the BITE preprocessing pipeline.

2.2. Scan-to-Mesh and Mesh-to-Scan Distance Cal-
culation

To evaluate results on our new 3D test set, we follow

the scheme proposed by [4]. First, a rigid alignment (ro-

tation, translation, and scaling) between the prediction and

the ground truth scan is performed based on a few easy-

to-locate, labeled keypoints such as for example toes and

eyes. To further refine the alignment, we continue with

a rigid alignment that minimizes the absolute distance be-

tween each scan (i.e., ground truth) vertex and the nearest

point in the predicted mesh. Given this alignment, we cal-

culate two error measures for each image:

• Scan-to-mesh distance: The scan-to-mesh distance



Figure S.1. 3D test dataset. Scans of real dogs were textured and

rendered. For each scan we show one out of 7 renderings from

different frontal viewpoints. The renderings are cropped according

to the BITE preprocessing pipeline.

between the ground truth scan and the reconstructed

mesh is calculated as the absolute distance between

each scan vertex and the nearest point on the predicted

mesh.

• Mesh-to-scan distance: Because the predicted mesh

has SMAL topology and thus vertices are denser on

head and paw regions than on other body parts, we

calculate also a mesh-to-scan distance based on a uni-

formly re-sampled mesh surface, obtained through

Voronoi clustering on the mesh of the mean shape in

standard t-pose, as described in Section 3.3. The mesh-

to-scan distance is the average distance between each

of those vertices and the closest point on the ground

truth scan.

3. Stability

Our work on ground contact enforces a simple, pervasive

mechanical constraint. One effect of this constraint is that

body parts that are likely to touch the ground actually touch

it, consequently our predicted 3D dogs are more likely to

be stable. To illustrate the stability of our predictions, we

take a random set of resulting 3D dogs in supposedly sta-

ble poses (i.e. not running or jumping) and place them in

a “Bullet” physics simulation. If stable, the animals should

remain standing under the force of gravity. Figure S.2 il-

lustrates 100 dogs as predicted by our network. To the left,

we show for each dog the orientation w.r.t. the floor, as pre-

dicted by BITE-ttopt. The right image depicts the dogs by

the end of the physics simulation. We find that 93 out of

100 dogs remain standing, indicating that most of our pre-

dictions satisfy stability under the influence of gravity.

4. Failure Cases

The most common failure cases of BITE are illustrated

in Fig. S.3. They concern images with occlusions, dogs

viewed from the back, body parts outside the image bor-

ders, rare and complicated poses, as well as images with

multiple dogs.

5. D-SMAL

In the following, we provide further details about the

learning procedure of the D-SMAL model.

Method. We use 39 toy figurines representing animals

in the canine family, thus adding 34 toy scans of dogs to

the those of the original SMAL training set, which con-

tained two dogs, a fox, a wolf and a hyena from the canine

group. The new set of toys includes different breeds, cover-

ing many popular ones, with variation in size, type of ears

and fur length. Information about the breeds in the training

set is provided in Fig. S.5, where the breed label is placed

below each 3D scan, in gray. In D-SMAL we also consider

a finer segmentation of the SMAL template, adding two

more body parts to the SMAL model skeleton: left and right

ear. The resulting skeleton is compatible with SMAL, as

the two additional parts are leaves in the kinematic tree, and

their relative pose can be set to zero for backward compat-

ibility. We follow the SMAL learning pipeline [5], namely

we first register all the toys with the GLoSS algorithm, then

we place the toys in a reference pose and learn the shape

space with Principal Component Analysis (PCA) over the

pose-normalized training set.

3D landmarks. To guide the GLoSS registration, we

manually annotated all the toy scans with 38 surface land-

marks, extending the 24 landmarks used for the original

SMAL model. This was necessary to reduce the alignment

errors when fitting the GLoSS template to the toy scans. For

several breeds, especially those with long fur, the registra-

tion with a smaller set of landmarks was prone to errors.

The manually annotated 3D landmarks are: nose tip, lower

lip, eye point toward the nose, eye point toward the ear, ear

tip, neck back, belly, back midpoint, shoulder, armpit, wrist,

feet, hip, knee, tail begin, tail middle, tail tip, pelvis, middle

chest, neck base, between ears, tail 1/8, between shoulder

blades, back of the hip, cheek.

Registration. We follow the GLoSS registration proce-

dure and augment it where necessary. We add extra side

information, namely a flag that indicates whether the dog

has floppy ears. In that case, we set the ears’ 3D rotation in

the GLoSS model template accordingly. We also indicate if

the dog has the mouth closed. If that is the case, vertices

on the inside of the mouth are ignored in the mesh-to-scan

loss, furthermore we also define a lip-matching loss. This

is applied during both main steps of the GLoSS registration

pipeline (see [5]), model-based and model-free registration.



(a) Start of simulation (b) End of simulation

Figure S.2. ”Bullet” physics simulation. Initialization and final output of a bullet physics simulation for 100 predicted dogs from BITE-

ttopt.

BITE

BITE-ttopt (ours)

Figure S.3. Failure Cases. From top to bottom: input image, BITE and BITE-ttopt.

Finding a good set of hyper-parameters for the GLoSS

energy took some effort. The final set was selected after

an extensive search, in such a way that the same hyper-

parameters could be kept for all samples in the training set.

We had to discard one case with extremely long fur, the

Shih-Tzu in Figure S.7, since the fur hides the legs com-

pletely and their registration cannot be determined. Figure

S.5 illustrates the 3D scans, in gray; and the outcome of the

registration, with different colors for different body parts.

Unposing. Given GLoSS estimates of the scan 3D pose,

we reverse the forward kinematics to obtain all registered

samples in a reference pose (commonly referred to as T-

pose, borrowing the term from human models). This is il-

lustrated in Figure S.6. Since we observed a few cases with

unrealistic limb proportions, where the back legs were too

long, we further improve the registered instances by scaling

the front and back legs to the same length, as explained in

the paper. On the final set thus obtained, we perform PCA

to learn the D-SMAL model. A visualization of the PCA

shape space is presented in Figure 2 in the main paper, with

the D-SMAL template and shape variations of ±3σ along

the leading principal directions.

6. Qualitative Results

6.1. BARC+ vs. BARC

In this analysis, we aim to visually demonstrate the im-

pact of replacing the SMAL model with our new D-SMAL

model. To that end, we train the BARC network twice, to

obtain two variants: one that uses SMAL as in the original

paper, termed BARC; and on that uses D-SMAL as in our

initialisation, termed BARC+. Figure S.4 compares their

predictions for a number of test images. One can clearly

see that the shape improves, and breed-specific features are



BARC

BARC+

Figure S.4. Shape Improvements. Top row: input image, Middle: BARC, bottom row: BARC+. Note that these are not full BITE results.

The improvements illustrate the effect of the enhanced D-SMAL dog model in isolation.

Figure S.5. Registration. 3D scans (gray), the registration result with colors denoting body parts, and the result overlaid on the scan

(purple and white, respectively).

recovered more faithfully when using D-SMAL.



Figure S.6. Result of pose-normalization.

All toys are in a reference pose.

Figure S.7. 3D scan of a toy representing a Shih-Tzu. This

example was not included in the D-SMAL training, due to the dif-

ficulty of defining correspondences on the legs.

6.2. Comparison to Non-Parametric Methods

In recent times, novel non-parametric approaches, such

as BANMo and ViSER, have emerged. Unlike BITE, which

functions on single images, these methods require multiple

images of the same dog (usually in the form of video data)

to establish a non-parametric model of the dog’s 3D shape.

To give the reader an impression of the quality of BITE-

ttopt predictions in comparison to the non-parametric mod-

els, we showcase several outcomes for both BITE-ttopt and

BANMo in Figure S.8. For the BANMo results, the recon-

struction of each dog has been optimized over 11 videos.

BITE-ttopt, on the other hand, produces a faithful 3D shape

and pose from a single image and does not require access to

an extensive set of videos of the subject.

6.3. Random Selection of Results

Figures S.9, S.10, S.11, S.12, S.13, S.14, S.15, S.16,

S.17, S.18, S.19 and S.20 show a random selection of Stan-

ford Extra test images with results from WLDO (who left

the dogs out [1]), CTF (coarse-to-fine animal pose and

shape estimation [2]), BARC [3], BITE and BITE-ttopt.
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WLDO CTF BARC BITE (ours) BITE ttopt (ours)

Figure S.9. Qualitative results for random test images. From left to right: input image, WLDO [1], CTF [2], BARC [3], BITE and BITE-

ttopt.



WLDO CTF BARC BITE (ours) BITE ttopt (ours)

Figure S.10. Qualitative results for random test images. From left to right: input image, WLDO [1], CTF [2], BARC [3], BITE and

BITE-ttopt.



WLDO CTF BARC BITE (ours) BITE ttopt (ours)

Figure S.11. Qualitative results for random test images. From left to right: input image, WLDO [1], CTF [2], BARC [3], BITE and

BITE-ttopt.



WLDO CTF BARC BITE (ours) BITE ttopt (ours)

Figure S.12. Qualitative results for random test images. From left to right: input image, WLDO [1], CTF [2], BARC [3], BITE and

BITE-ttopt.



WLDO CTF BARC BITE (ours) BITE ttopt (ours)

Figure S.13. Qualitative results for random test images. From left to right: input image, WLDO [1], CTF [2], BARC [3], BITE and

BITE-ttopt.



WLDO CTF BARC BITE (ours) BITE ttopt (ours)

Figure S.14. Qualitative results for random test images. From left to right: input image, WLDO [1], CTF [2], BARC [3], BITE and

BITE-ttopt.



WLDO CTF BARC BITE (ours) BITE ttopt (ours)

Figure S.15. Qualitative results for random test images. From left to right: input image, WLDO [1], CTF [2], BARC [3], BITE and

BITE-ttopt.



WLDO CTF BARC BITE (ours) BITE ttopt (ours)

Figure S.16. Qualitative results for random test images. From left to right: input image, WLDO [1], CTF [2], BARC [3], BITE and

BITE-ttopt.



WLDO CTF BARC BITE (ours) BITE ttopt (ours)

Figure S.17. Qualitative results for random test images. From left to right: input image, WLDO [1], CTF [2], BARC [3], BITE and

BITE-ttopt.



WLDO CTF BARC BITE (ours) BITE ttopt (ours)

Figure S.18. Qualitative results for random test images. From left to right: input image, WLDO [1], CTF [2], BARC [3], BITE and

BITE-ttopt.



WLDO CTF BARC BITE (ours) BITE ttopt (ours)

Figure S.19. Qualitative results for random test images. From left to right: input image, WLDO [1], CTF [2], BARC [3], BITE and

BITE-ttopt.


